October 2008

FJA4310 NPN Epitaxial Silicon Transistor

- Audio Power Amplifier
- High Current Capability : I_C=10A
- High Power Dissipation
- Wide S.O.A
- Complement to FJA4210

Absolute Maximum Ratings* T_a = 25°C unless otherwise noted

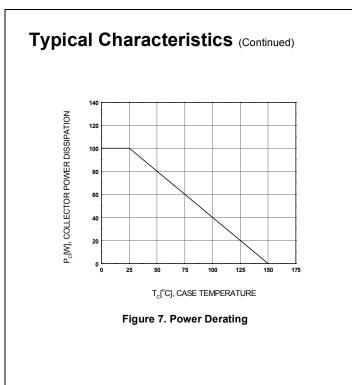
Symbol	Parameter	Ratings	Units	
V _{CBO}	Collector-Base Voltage	200	V	
V _{CEO}	Collector-Emitter Voltage	140	V	
V _{EBO}	Emitter-Base Voltage	6	V	
IC	Collector Current (DC)	10	A	
IB	Base Current (DC)	1.5	A	
P _C	Collector Dissipation (T _C =25°C)	100	W	
TJ	Junction Temperature	150	°C	
T _{STG}	Storage Temperature	- 55 ~ 150	°C	

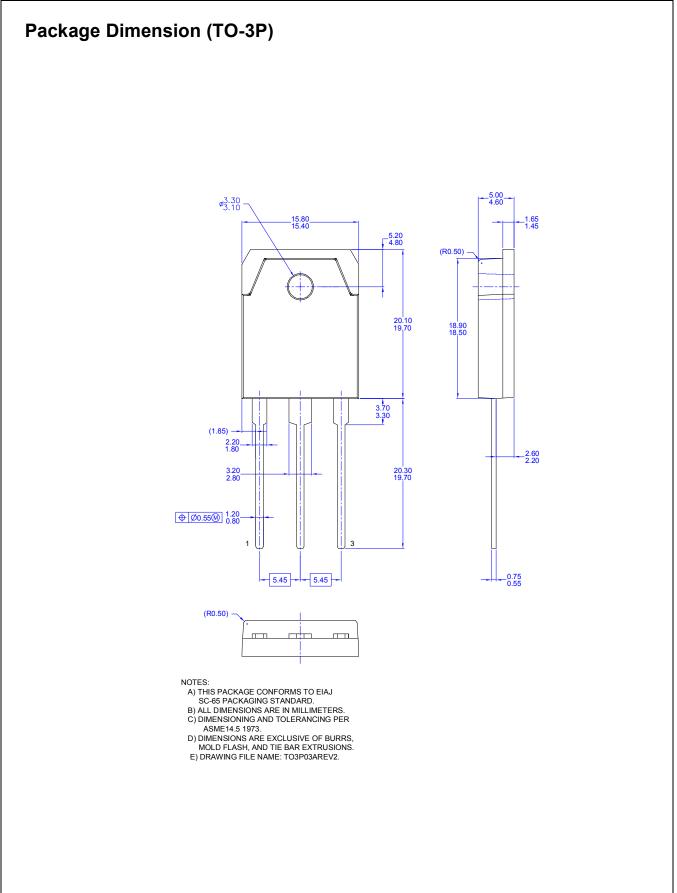
* These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Electrical Characteristics* T_a =25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	I _C =5mA, I _E =0	200			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C =50mA, R _{BE} =∞	140			V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E =5mA, I _C =0	6			V
I _{CBO}	Collector Cut-off Current	V _{CB} =200V, I _E =0			10	μA
I _{EBO}	Emitter Cut-off Current	V _{EB} =6V, I _C =0			10	μA
h _{FE}	* DC Current Gain	V _{CE} =4V, I _C =3A	50		180	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C =5A, I _B =0.5A			0.5	V
C _{ob}	Output Capacitance	V _{CB} =10V, f=1MHz		250		pF
f _T	Current Gain Bandwidth Product	V _{CE} =5V, I _C =1A		30		MHz

* Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%


h_{FE} Classification


Classification	R	0	Y
h _{FE}	50 ~ 100	70 ~ 140	90 ~ 180

© 2008 Fairchild Semiconductor Corporation FJA4310 Rev. C1

Typical Characteristics 250mA 1000 I_B = 400m/ = 200mA V_CE = 4 V 150mA Ic [A], COLLECTOR CURRENT heed DC CURRENT GAIN I_B = 100mA Ta = 25 °C Ta = 125 °C 5 $I_{B} = 50 \text{mA}$ Ta = - 25 °C 2 I_B = 20mA 10 0.1 10 2 3 $\rm I_{\rm c}$ [A], COLLECTOR CURRENT V_{CE} [V], COLLECTOR-EMITTER VOLTAGE Figure 1. Static Characterstic Figure 2. DC current Gain 3. I_ = 10 I_ V_{cE}(sat) [V], SATURATION VOLTAGE $V_{CE}(sat)$ [V], SATURATION VOLTAGE 2.5 2.0 1.5 0.1 Ta = 25 1.0 - 25 °C Та 0.5 17= 10A - 5A 0.01 └─ 0.01 0.0 0.4 1.2 1.6 2.0 0.8 0.1 I_c [A], COLLECTOR CURRENT I_B [A], BASE CURRENT Figure 3. V_{CE}(sat) vs. I_B Characteristics Figure 4. Collector-Emitter Saturation Voltage V_{CE} = 4 V t=10ms I_ (Pulse) I_c [A], COLLECTOR CURRENT Ic [A], COLLECTOR CURRENT I (DC t=100 Ta = 25 °C 2 Ta = 125 T_c = 25°C Single Pulse 25 °C 0.1 0.0 10 100 0.5 1.0 1.5 V_{CE} [V], COLLECTOR-EMITTER VOLTAGE V_{BE} [V], Base-Emitter On VOLTAGE Figure 6. Forward Bias Safe Operating Area Figure 5. Base-Emitter On Voltage

© 2008 Fairchild Semiconductor Corporation FJA4310 Rev. C1

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [®] Build it Now [™] CorePLUS [™] <i>CROSSVOLT</i> [™] CTL [™] Current Transfer Logic [™] EcoSPARK [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series [™] FACT [®] FAST [®] FastvCore [™] FPS [™] FRFET [®] Global Power Resource SM	Green FPS™ Green FPS™ e-Series™ GTO™ <i>i-Lo</i> ™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® © PDP-SPM™ Power220®	Power247 [®] POWEREDGE [®] Power-SPM™ PowerTrench [®] Programmable Active Droop™ QFET [®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM [®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6	SuperSOT [™] -8 SyncFET [™] The Power Franchise [®] P TinyBoost [™] TinyBoost [™] TinyBoost [™] TinyDogic [®] TINYOPTO [™] TinyPower [™] TinyPWM [™] TinyWire [™] µSerDes [™] UHC [®] UniFET [™] VCX [™]
---	---	---	---

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support 2. device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild semiconductor. The datasheet is printed for reference infor- mation only.

PRODUCT STATUS DEFINITIONS

